Debugging long-read genome assemblies using string graph analysis

Pierre MARIJON, Jean Stéphane VARRÉ, Rayan CHIKHI

INRIA, Université Lille 1, CNRS

Why assemblies need debugging?

Assembly of 3rd generation sequencing data

- ▶ requires correction (hybrid or non-hybrid)
- solves almost all genomic repetitions

KOREN et PHILLIPPY 2015 say "One chromosome, one contig", but ...

Why assemblies need debugging?

Assembly of 3rd generation sequencing data

- requires correction (hybrid or non-hybrid)
- ► solves almost all genomic repetitions

 KOREN et PHILLIPPY 2015 say "One chromosome, one contig", but \ldots

Bacterial assembly is not solved

NCTC : 3000 bacteria cultures sequenced with PacBio

521 out of 1136 assemblies are not single-contig

Species	Strain	Sample	Runs	Automated Assembly	Manual Assembly	Manual Assembly Chromosome Contig Number	Manual Assembly Plasmid Contig Number	Manual Assembly Unidentified Contig Number
Achromobacter xylosoxidans	NCTC10807 2	ERS451415 C	ERR550491 C ERR550506 C ERR550507 C	Pending	EMBL 0	1	0	0
Budvicia aquatica	NCTC12282 12	ERS462988 C	ERR581162 @	Pending	EMBL @	2	0	0
Campylobacter jejuni	NCTC11351 @	ERS445056 2*	ERR550473 🖾 ERR550476 🖾	Pending	EMBL @	1	0	0
Cedecea neteri	NCTC12120 @	ERS462978 C	ERR581152 C ERR581168 C ERR597265 C	Pending	EMBL @	7	1	0
Citrobacter amalonaticus	NCTC10805 2	ERS485850 2	ERR601566 2 ERR601575 2	Pending	EMBL @	1	2	0
Citrobacter freundii	NCTC9750 2	ERS485849 C	ERR601559 27 ERR601565 27	Pending	EMBL @	1	0	0
Citrobacter koseri	NCTC10849 E	ERS473430 E	ERR581173 🖙	Pending	EMBL @	1	1	0
Corynebacterium diphtheriae	NCTC11397 C	ERS451417 C	ERR550510 @	Pending	EMBL @	1	0	0
Cronobacter sakazakii	NCTC11467 2	ERS462977 2	ERR581151 2 ERR581167 2	Pending	EMBL @	4	3	0
Enterobacter aerogenes	NCTC10006 C	ERS462975 C	ERR581148 C ERR581149 C	Pending	EMBL 0	1	0	0
Enterobacter amnigenus	NCTC12124 2	ERS485854 12	ERR601570 2	Pending	EMBL @	1	0	0
Enterobacter asburiae	NCTC12123 C	ERS485853 C	ERR601569 C ERR601574 C	Pending	EMBL 0	2	3	0
Enterobacter cancerogenus	NCTC12126 2	ERS462979 2	ERR581153 2 ERR581169 2 ERR597266 2	Pending	EMBL @	6	1	0

Bacterial assembly is not solved

NCTC : 3000 bacteria cultures sequenced with PacBio

521 out of 1136 assemblies are not single-contig

Species	Strain	Sample	Runs	Automated Assembly	Manual Assembly	Manual Assembly Chromosome Contig Number	Manual Assembly Plasmid Contig Number	Manual Assembly Unidentified Contig Number
Achromobacter xylosoxidans	NCTC10807	ERS451415 2	ERR550491 2 ERR550506 2 ERR550507 2	Pending	EMBL 0	1	0	0
Budvicia aquatica	NCTC12282 C	ERS462988 12*	ERR581162 C	Pending	EMBL @	2	0	0
Campylobacter jejuni	NCTC11351 @	ERS445056 2	ERR550473 2 ERR550476 2	Pending	EMBL @	1	0	0
Cedecea neteri	NCTC12120 @	ERS462978 C	ERR581152 @ ERR581168 @ ERR597265 @	Pending	EMBL 0	7	1	0
Citrobacter amalonaticus	NCTC10805 12*	ERS485850 @	ERR601566 2 ERR601575 2	Pending	EMBL @	1	2	0
Citrobacter freundii	NCTC9750 C	ERS485849 2	ERR601559 C ERR601565 C	Pending	EMBL @	1	0	0
Citrobacter koseri	NCTC10849 E	ERS473430 E	ERR581173 2	Pending	EMBL @	1	1	0
Corynebacterium diphtheriae	NCTC11397 12	ERS451417 C	ERR550510 2	Pending	EMBL @	1	0	0
Cronobacter sakazakii	NCTC11467 21	ERS462977 E	ERR581151 2 ERR581167 2	Pending	EMBL @	4	3	0
Enterobacter aerogenes	NCTC10006 @	ERS462975 C	ERR581148 C ERR581149 C	Pending	EMBL 0	1	0	0
Enterobacter amnigenus	NCTC12124 2	ERS485854 2	ERR601570 2	Pending	EMBL @	1	0	0
Enterobacter asburiae	NCTC12123 @	ERS485853 C	ERR601569 C ERR601574 C	Pending	EMBL @	2	3	0
Enterobacter cancerogenus	NCTC12126 2	ERS462979 2	ERR581153 2 ERR581169 2 ERR597266 2	Pending	EMBL 0	6	1	0

Towards metagenomics

- Few datasets
- Lack of tailored assembler
- ▶ Will current genomic assemblers be adequate?

Premise

An assembly graph can be defined as :

- $\blacktriangleright \mathsf{ nodes} \to \mathsf{ reads}$
- $\blacktriangleright \ \mathsf{edges} \to \ \mathsf{overlaps}$
- \blacktriangleright paths \rightarrow contigs

Premise

An assembly graph can be defined as :

- $\blacktriangleright \mathsf{ nodes} \to \mathsf{ reads}$
- $\blacktriangleright \text{ edges} \rightarrow \text{ overlaps}$
- \blacktriangleright paths \rightarrow contigs

We observe that :

- ► majority of assembly choice are made during graph construction
- ► hybrid or non-hybrid assemblers perform equally well
- \blacktriangleright \rightarrow we will consider non-hybrid assembly

Assembly Graph

A graph with drastic selection of overlaps.

For each read we select two best overlaps : 1 left, 1 right.

BOGs are used by assemblers Canu $^{\rm 1}$ and HINGE $^{\rm 2}.$

^{1.} KOREN, WALENZ et al. 2017.

^{2.} KAMATH et al. 2017.

Full Overlap Graph

A graph with maximal information.

For each node we keep all overlaps.

FOGs are generated by Minimap PAF output, used by Miniasm³.

Dataset used

- One bacterial dataset :
 - ► Terriglobus roseus : synthetic, 20x coverage (LongISLND⁴)
- One metagenomic dataset :
 - ▶ MBRAC-5 : synthetic, 5 bacterias from ⁵

^{4.} LAU et al. 2016.

^{5.} SINGER et al. 2016.

Debugging tools

How to debug assemblies?

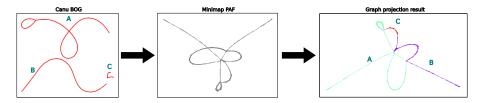
Two datasets that do not assemble well :

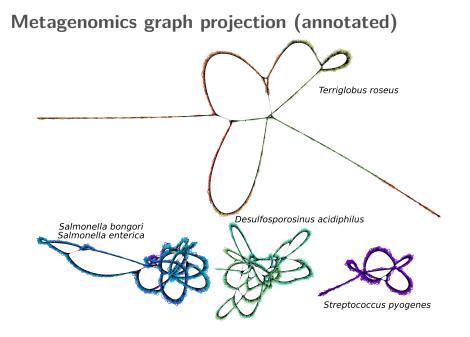
Dataset	Number of Canu contig	Number of Miniasm contig	Expected
Terriglobus roseus	3	7	1
MBRAC-5	18	85	5

3 assembly graphs : FOG, Canu BOG, Miniasm's graph.

How to debug assemblies?

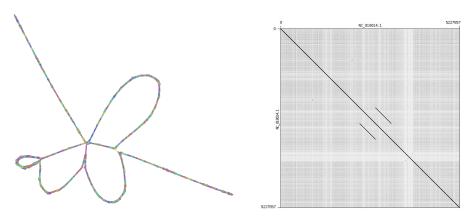
Two datasets that do not assemble well :


Dataset	Number of Canu contig	Number of Miniasm contig	Expected
Terriglobus roseus	3	7	1
MBRAC-5	18	85	

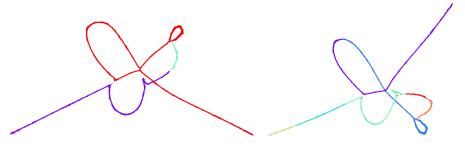

3 assembly graphs : FOG, Canu BOG, Miniasm's graph.

We will compare the assembly graphs.

Graph projection

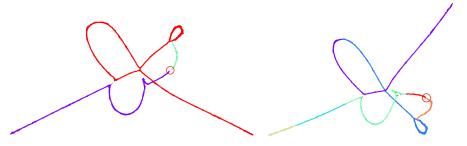

Graph projection : of a selective graph (BOG) onto a less selective graph (FOG)

MBRAC-5 Canu BOG on Minimap FOG


Full Overlap Graph of one bacteria

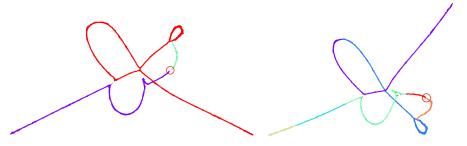
Minimap FOG graph of **Terriglobus** roseus

dotplot *T. roseus*, genome vs genome


Comparing projections across assembler

Canu BOG project on Minimap FOG

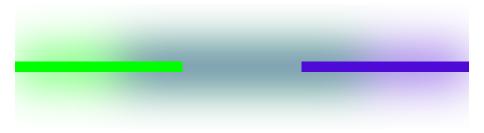
Miniasm assembly graph on FOG

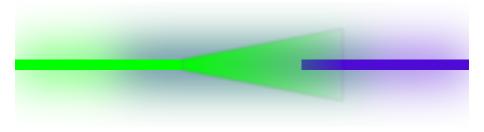

Comparing projections across assembler

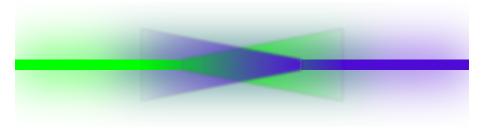
Canu BOG project on Minimap FOG

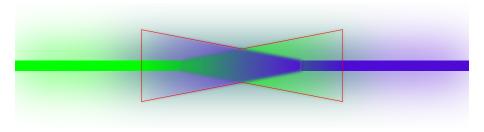
Miniasm assembly graph on FOG

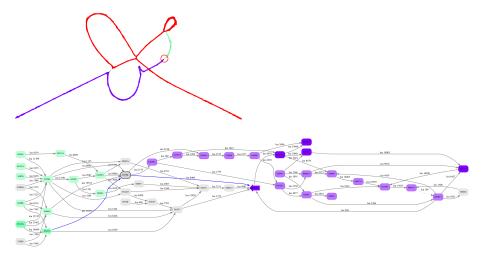
Comparing projections across assembler




Canu BOG project on Minimap FOG

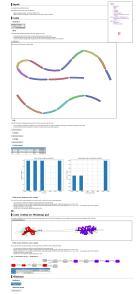

This assembly breakpoint cannot be :


- explained by a repetition,
- nor solved by assembly reconciliation


Miniasm assembly graph on FOG

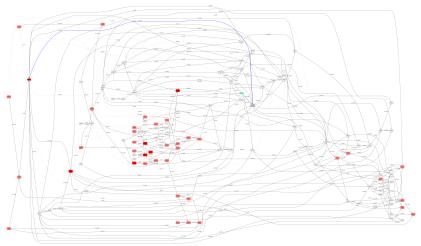
Conclusion

- Bacterial assembly is not solved
- Study of assembly graphs can help
- ► Graph projection pin-points where assemblies break
- Subgraph extraction enables to understand why


If your 3rd generation assembly needs debugging..

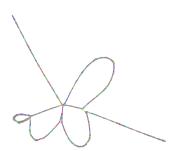
We created a pipeline to run our analysis easily with a fancy HTML output.

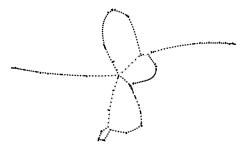
https://gitlab.inria.fr/pmarijon/assembly_report


Contacts :

- mail : pierre.marijon@inria.fr
- twitter : @pierre_marijon

- ► Find better layout for subgraph visualization
- ▶ NCTC dataset analysis (or your dataset ?)
- ► How to visualize a large FOG


- ► Find better layout for subgraph visualization
- NCTC dataset analysis (or your dataset ?)
- ► How to visualize a large FOG



- ► Find better layout for subgraph visualization
- ▶ NCTC dataset analysis (or your dataset ?)
- ► How to visualize a large FOG

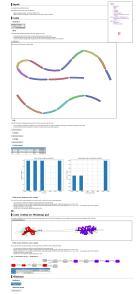
SRA id	NCTC number of contig	Canu number of contig
ERS530422	6	7
ERS523588	7	10
ERS513137	7	12
ERS530437	6	13
ERS530440	7	8
ERS485853	5	13
ERS530413	6	7
ERS718603	5	9
ERS538530	6	7
ERS715425	6	10

- ► Find better layout for subgraph visualization
- ▶ NCTC dataset analysis (or your dataset ?)
- ► How to visualize a large FOG

Terriglobulus Roseus PAF :

11,381 nodes, 122,153 edges

Terriglobulus Roseus Compressed PAF : 368 nodes, 400 edges; MATAM algorithm [Pericard *et al* 2017]


If your 3rd generation assembly needs debugging..

We created a pipeline to run our analysis easily with a fancy HTML output.

https://gitlab.inria.fr/pmarijon/assembly_report

Contacts :

- mail : pierre.marijon@inria.fr
- twitter : @pierre_marijon

