Optimizing early steps of long-read genome assembly

Pierre MARIJON, Maël KERBIRIOU, Jean-Stéphane VARRÉ, Rayan CHIKHI

November 20, 2018

盆栽 team, Lille

What's a long-read?

Third generation reads are :

- \bullet Long $> 10 kb^{-1}$
- \bullet Erroneous \approx 16% 1
- Chimeric ²

¹Jain et al. 2018

²Laver et al. 2016

Sequencing faster, cheaper, stronger

James Hadfield

@coregenomics

Just heard that @illumina will announce \$100 genome in a couple of months #AMP2018

Traduire le Tweet

11:37 - 3 nov. 2018

Clive G. Brown

@Clive_G_Brown

If we've got a couple of months i think PromethION can also do it, think its 300G+ per flowcell, at 220 now.

James Hadfield @coregenomics

Just heard that @illumina will announce \$100 genome in a couple of months #AMP2018

Afficher cette discussion

What we can do with long-read?

By mapping against reference:

- read correction
- variant calling
- . . .

against themselves:

- self correction
- assembly
- . . .

Long-read mapping

Many tools :

- minimap[2]
- mhap
- ngmlr
- graphmap
- daligner
- . . .

Some output format:

- MHAP:
 - $\verb"read1" read2" 0.14" 1955 0 998 20480 21581 0 45 19527 19801$
- Pairwise Alignement Format:

```
read1 21581 998 20480 + read2 19801 45 19527 1955 19482 255
```

• SAM

Correction?

Correction involves a lot of operations and costs time and memory. I just want to detect chimeras.

What is a chimera?

"Error profile of a typical long read. The average error rate is say 12% but it varies and occasionally is pure junk." Gene Myers $^{\rm 4}$

Chimeric read: when a part of the read is not well supported (i.e. covered) by other reads of the dataset.

 $^{^4} https://dazzlerblog.wordpress.com/2017/04/22/1344/\\$

Yet Another Chimeric Read Detector

Yet Another Chimeric Read Detector

Test dataset: 20x synthetic long read⁵ of *T. roseus*

⁵LongISLND with pacbio error model

Yet Another Chimeric Read Detector

	minimap2 + yacrd	DAScrubber ⁶
wallclock time (seconds)	48.13	365.79
precision	100.00%	87.70%
sensitivity	70.34%	71.16%

 $^{^6 {\}rm run}$ by https://github.com/rrwick/DASCRUBBER-wrapper

Another trouble: the disk space

Shaun Jackman

@sjackman

I have a 1.2 TB PAF.gz file of minimap2 allvs-all alignments of 18 flowcells of Oxford Nanopore reads. Yipes. I believe that's my first file to exceed a terabyte. Is there a better way? Perhaps removing the subsumed reads before writing the all-vs-all alignments to disk?

18 flowcells produce \approx 180Gb-540Gb

A summary of troubles and some possible solutions:

https://blog.pierre.marijon.fr/binary-mapping-format/

Filter Pairwise Alignment

FPA can filter on:

- type:
 - containment
 - internal match
 - dovetails
- self match
- overlap length
- read match against a regex

FPA can rename your read, compress (gzip, bzip, lzma) and convert your pairwise alignment in an overlap graph (GFA1)

Filter Pairwise Alignment

	wallclock time (s)	output length (Mb) / % space saved	throughput (kb/s)
minimap2	866	565	652.320
minimap2 + fpa no filter	869	565 (0%)	650.047
$\begin{array}{l} {\rm minimap2} \ + \\ {\rm fpa} \ {\rm ovl} \ {\rm length} \ > 2000 \end{array}$	868	452 (20%)	520.468
minimap2 + fpa dovetails only	869	401 (29%)	462.007

Dataset: SQK-MAP-006 2D nanopore read

http://lab.loman.net/2015/09/24/first-sqk-map-006-experiment/

Filter Pairwise Alignment

	minimap2	minimap2	
	+ miniasm	fpa + miniasm	diff
PAF file size (Mb)	565	452	-20%
assembly time (s)	6.5	6	0.5
	\bigcirc		Ø.
assembly result			Ø

Dataset: SQK-MAP-006 2D nanopore read http://lab.loman.net/2015/09/24/first-sqk-map-006-experiment/

Conclusion

What we have:

- more and more third generation sequencing data
- analyses generate even more intermediate data
- with simple algorithms we can save time and space

What we need:

- compressed pairwise alignement format
- to detect more precisely poor quality regions

Questions?

yacrd: https://gitlab.inria.fr/pmarijon/yacrd BIOCONDA

fpa: https://gitlab.inria.fr/pmarijon/fpa BIOCONDA

twitter: **@pierre_marijon**

slides are avaible on my website:

https://pierre.marijon.fr

