Debugging long-read genome assemblies using string graph analysis

[@BRIStAL

Centre de Recherche en Informatique,
Signal et Automatique de Lille

Pierre MARIJON! , Jean-Stéphane VARRE? and Rayan CHIKH]I?2

I Inria, Université de Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France
2 Univ. Lille, CNRS, Centrale Lille, Inria, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France

(rezia—

INVENTEURS DU MONDE NUMERIQUE

Université
de Lille

Third-generation long-read sequencing technologies tackle the repeat problem in genome assembly by producing reads that are long enough to span most repeat
instances. In principle one expects that with such reads most bacterial genomes will be assembled into a single contig [1].
However in practice, some datasets fail to be perfectly assembled even with leading assemblers, and are fragmented into a handful of contigs.

As a mean to investigate those cases, we consider the string graphs that are generated by assemblers during intermediate stages of the assembly process. We seek to
establish a coherent framework for analyzing these graphs to help us determine the biological causes that led the assembler to output shorter contigs.

(

minimap

We built an assembly analysis software that takes as input a set of 3rd generation reads, runs Canu [2] and mini

\

{asm|map} [3] (but could include other assembly tools), and analyzes their outputs at several stages.
Canu and Mini{asm|map} have several differences:
i. Canu corrects reads before assembly while mini{fasm|map} generates contigs directly from trimmed but

uncorrected reads

ii. Different read overlappers (but related strategies), and different assembly heuristics.
Our Snakemake pipeline includes home-made graph assembly tools (light orange nodes) and provides the user

with an HTML report.

J

The PAF (Pairwise Alignment Format)
file: all read overlaps seen by Canu.

i. Canu (MHAP) computes a signature for
each read and uses it to get an estimate
of the Jaccard distance between two
reads

ii. Canu then performs overlaps for all
pairs of reads with low Jaccard distance
We converted the PAF file to a graph
(GFA format) for easier manipulation and
representation.

The minimap [3] software also creates a
PAF file:

i. it computes a hash table that associates
minimal kmers to each read

ii. two reads overlap if they share some
number of minimal kmers

iii. minimap use this overlap to generate
this PAF

miniasm uses the minimap PAF to
assemble contigs:

i. for each read, bases that are not
covered by at least one other read are
removed

ii. assembly graph is created from the
PAE and transitive edges, small bubbles
and tips are removed

iii. contigs are non-branching paths

Overlap read error rate histogram at the
extremities of Canu contigs.

Overlaps with a high error rate induce
the end of a contig. But here, no overlap
has higher error rate than a threshold
determined by Canu.

We went further and examined the
assembly graph around the extremities of
contigs by going back to the Canu PAF.

To generate the graphs on the right, we
search for the shortest path of overlaps
between contig read extremities. We also
generated a DAG using depth-first
search, and took the intersection of the
two DAGs from both contig extremities.

‘$

lll
L 4
*

C Number of reads 1019
Number of contigs 3
dnu Total size 4769751
PAF
1M1 Number of reads 11381
Mlnlmap Number of overlaps 232627
PAF Canu contigs on minimap PAF
C
A B
. Number of contigs 7
ngnlasm Total size 5007205 6
v
o
e |
o |Canu
3 |overlap
3 ;
O
&
[— I 2
1L . -
ok ' ' ; ; ; S
— — - 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 i
: error rate :
: Contig extremity report

A

. .
. .

i

n

To understand why 3rd generation assembly tools create fragmented assemblies:
i. We analyze the quality and the length of the overlaps of the reads at contig extremities.

ii. We examine overlaps with good scores (with respect to Canu thresholds), but that were discarded by Canu.

A to C junction

The BOG (Best Overlap Graph) is the
main graph of Canu [2].

i. Canu keeps just the two best overlaps
(the longest) for each read

ii. it checks that the overlap error rate is
less than some dynamic threshold

iii. Canu constructs unitigs and contigs
based on the BOG

Contained reads are removed:

container read

containment overlap

containment read

Graph projection

i. idea: compare Canu and minimap
assembly graphs on the same graph

ii. we include a read if it is present in
both assembly graphs

iii. we assign a different color to each
connected component according to the

Canu BOG

6,287 bp

3,022,000 bp 3,023,000 bp
| | |

i
|
+
!
H

T
.
. I
. ol N
— — i — R AR I I | . — —
. " M 1]
'

- — e e = . - -i-- - - - - -

Track 1 reads used by Canu unitigger
Track 2 raws reads

T. Roseus

T. Roseus
e

iii. We build a string graph (following Myers [4]) of reads around contig extremities (using the overlap information computed by Canu), and then we search for a path

between contig extremities.

Our pipeline provides us with insights as to why and where an assembly failed. From those first observations, we will improve and automate the extraction of graphs
between reads at contig extremities, with further annotations. Finally, we hope to be able to propose alternative assemblies.

[1] Sergey Koren and Adam M Phillippy. One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly. Current Opinion in Microbiology, 23:110-120, 2015.
[2] Sergey Koren, and al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Research, page gr.215087.116, 2017.
[3] Heng Li. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics, 32(14):2103-2110, 2016.
[4] Eugene W Myers. The fragment assembly string graph. Bioinformatics, 21 (suppl_2): ii79-ii85, 2005.

